The result is a distributed system with no single point of failure. Users hold the crypto keys to their own money and transact directly with each other, with the help of the P2P network to check for double-spending.
It is a global distributed database, with additions to the database by consent of the majority.
I very much wanted to find some way to include a short message, but the problem is, the whole world would be able to see the message. As much as you may keep reminding people that the message is completely non-private, it would be an accident waiting to happen.
Eventually at most only 21 million coins for 6.8 billion people in the world if it really gets huge. But don’t worry, there are another 6 decimal places that aren’t shown, for a total of 8 decimal places internally. It shows 1.00 but internally it’s 1.00000000. If there’s massive deflation in the future, the software could show more decimal places.
How does everyone feel about the B symbol with the two lines through the outside? Can we live with that as our logo?
When you generate a new bitcoin address, it only takes disk space on your own computer (like 500 bytes). It’s like generating a new PGP private key, but less CPU intensive because it’s ECC. The address space is effectively unlimited. It doesn’t hurt anyone, so generate all you want.
Bitcoin addresses you generate are kept forever. A bitcoin address must be kept to show ownership of anything sent to it. If you were able to delete a bitcoin address and someone sent to it, the money would be lost.
The design supports a tremendous variety of possible transaction types that I designed years ago. Escrow transactions, bonded contracts, third party arbitration, multi-party signature, etc. If Bitcoin catches on in a big way, these are things we’ll want to explore in the future, but they all had to be designed at the beginning to make sure they would be possible later.
The incentive may help encourage nodes to stay honest. If a greedy attacker is able to assemble more CPU proof-of-worker than all the honest nodes, he would have to choose between using it to defraud people by stealing back his payments, or using it to generate new coins. He ought to find it more profitable to play by the rules, such rules that favour him with more new coins than everyone else combined, than to undermine the system and the validity of his own wealth.
The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free.
The steady addition of a constant of amount of new coins is analogous to gold miners expending resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.
By convention, the first transaction in a block is a special transaction that starts a new coin owned by the creator of the block. This adds an incentive for nodes to support the network, and provides a way to initially distribute coins into circulation, since there is no central authority to issue them.
The fact that new coins are produced means the money supply increases by a planned amount, but this does not necessarily result in inflation. If the supply of money increases at the same rate that the number of people using it increases, prices remain stable. If it does not increase as fast as demand, there will be deflation and early holders of money will see its value increase. Coins have to get initially distributed somehow, and a constant rate seems like the best formula.
If you’re having trouble with the inflation issue, it’s easy to tweak it for transaction fees instead. It’s as simple as this: let the output value from any transaction be 1 cent less than the input value. Either the client software automatically writes transactions for 1 cent more than the intended payment value, or it could come out of the payee’s side. The incentive value when a node finds a proof-of-work for a block could be the total of the fees in the block.
There will be transaction fees, so nodes will have an incentive to receive and include all the transactions they can. Nodes will eventually be compensated by transaction fees alone when the total coins created hits the pre-determined ceiling.
Total circulation will be 21,000,000 coins. It’ll be distributed to network nodes when they make blocks, with the amount cut in half every 4 years. first 4 years: 10,500,000 coins next 4 years: 5,250,000 coins next 4 years: 2,625,000 coins next 4 years: 1,312,500 coins etc... When that runs out, the system can support transaction fees if needed. It’s based on open market competition, and there will probably always be nodes willing to process transactions for free.
It might make sense just to get some in case it catches on. If enough people think the same way, that becomes a self fulfilling prophecy.
Once it gets bootstrapped, there are so many applications if you could effortlessly pay a few cents to a website as easily as dropping coins in a vending machine.
There is nobody to act as central bank or federal reserve to adjust the money supply as the population of users grows. That would have required a trusted party to determine the value, because I don’t know a way for software to know the real world value of things.
You could say coins are issued by the majority. They are issued in a limited, predetermined amount.